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PATTERSON FUNCTIONS AND VECTOR SETS* 

Sri Raman 
Rensselaer Polytechnic Institute, Troy, New York 

PATTERSON'S FUNCTION, 
WHAT, WHY, AND WHY NOT? 

In th i s  era of automation, it is but 
natural that  crystallographers think about the 
pc?ssihility of letting a high speed digital 
computer automatically solve the structure of 
a crystal  from the experimentally measured 
x-ray intensity data. Starting with the data, 
two paths are  clearly open. The first one in- 
volves the direct use of intensities in the 
formalism of Karle, Hauptmanand others. The 
second, but certainly the earlier approach, is 
that  of Patterson and his  function. 

In this  approach we take the Fourier 
transform of the data, and work with it in  the 
formalism of Buergerl and others 2,3,4,5 

Here it is not out of place to a s k  which pro- 
cedure is to be preferred. But such a ques- 
tion carries a n  implication that  there is some- 
thing quite drastically and charac ie i i s tks l ly  
different about the twoprocedures. It appears 
to us, speaking in  broad terms, that this is 
not really so. After all, we all start with the 
intensi t ies ,  and m o s t  probably, we are not 
going to ge t  any more information out of the 
data than what is actually present, by merely 

*This work was  supported by the National 
Aeronautics and Space Administration through 
The Rensselaer Interdisciplinary Materials 
Research Center and the National Institute of 
Denial Research under Grant 5Tl-DE 117-02. 

changing the mathematical formulation. Clear- 
ly, what is proven tobe useful is the introduc- 
tion of auxiliary informatidn of a physical and 
chemical nature. Here, we feel that  the in- 
troduction of such auxiliary criteria is more 
easily accomplished with Patterson's func- 
tier?, though conceivably the same  thing could 
be done with the direct methods. When aii 
is said and done, theformer certainly avoids 
undue and unwarranted mathematics, and 
comes within the domain of elegant and prac- 
ticable programming. That is the main reason 
why our vote has  been for Patterson's func- 
tion. Of course, the proof of the pudding is 
in  the eating, and the choice of a particular 
approach may well be more a matter of taste 
than anything else. 

THE CENTRAL PRINCIPLE 

The principle underlying all variants 
of Patterson's method is the piain, simpk f ~ t  
that information about the crystal  structure is 
contained by the intensitydata in  the form of 
the peaks of the interatomic vectors. These 
peaks a re  the peaks of Patterson's function, 
which is simply a Fourier ser ies  involving the 
x-ray intensity data, F(?I) ', as the Fourier 
coefficients, i.e., 



In principle, the synthesized function 
is supposed tocontain peaks at the N inter- 2 

+ +  
atomic vectors r -r (i, j = 1, N, the total i 1  
number of atoms per unit cell). But in  prac- 

tice, they do  not a lways contain all the peaks, 
more so i f  one adopts procedures of sharpen- 

ing. 

THE PROS AND C O N S  OF SHARPENING 

By now, it is well known that given a 
vector set, that is, given the N interatomic 
vectors, it is possible to obtain the structure 
in quite a straightforward way. 
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It is equally well known that Patterson 
functions are  very poor approximations of the 
corresponding vector setup, because the func- 
tions have considerable overlapping of peaks, 
unless the crystal  structure under investiga- 
tion is far too simple. For that reason, pro- 
cedures of peak sharpening have been devel- 
oped. However, commonly available sharp- 
ening procedures appear to take the intensity 
data, correct or even over correct them for 
thermal vibrations , in  the approximation of 
the Debye-Waller factor, and then modify 
them into such  quantities as unitary intensi- 
ties , normalized intensities, etc. , and use 
them as the coefficients in the calculation 
of a sharpened Patterson function. N o  doubt, 
the sharpened coefficients correspond to 
the intensi t ies  given by a structure of non- 
vibrating and point atoms. But the mere use 
of a limited number of point atom intensities 
in the Fourier summation does not give back 
a point atem Patterson for the simple reason 

that the intensity distribution is one which 
is abruptly truncated in  reciprocal space. 
As a result, the peaks still have widths. 

Secondly, s o m e  of the Patterson peaks get 
washed out by the negative ripples which 
a re  inevitable in these sharpening proce- 
dures. These two facts cause  lots of 
troubles, particularly in  the case of equal  
a t o m  structures of moderate complexity. For 
this  reason, it is not surprising that Martin 
Buerger h a s  gone to the extent of teaching, 
and we y c t ~ i ~ ,  the rmral? "Don't sharpen your 
Patterson function and then wonder why your 

use  of the minimum function did not lead to a 
successful conclusion. " But it is equally 
true that if  one looks at the unsharpened Pat- 
terson function of a crystal of moderate com- 
plexity, then it is very difficult to ge t  a good 
starting point for carrying out subsequent 
image-seeking procedures. Therefore, it is 
certainly useful to  develop two methods. 
First, we have got t o  extend the range of the 
Patterson coefficients. Second, we have got 
toretrieve and supply any information, either 
already missing in the unsharpened function, 
w i n g  to experimental errors, or more  often 
than not, any information unfortunately iosi, 
because of the use of point a tom intensities. 
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EXTENSION OF THE RANGE OF THE 
COEFFICIENTS BY THE METHOD 
OF FOURIER INVERSION7 *' 

The question of extension of the range 
of the coefficients is open. Here, we believe 
we can  do something. First of all, it is useful 



.THE DEVELOPMENT OF THE VECTOR SET 
OUT OF THE PATTERSON FUNCTION 

Now a r i se s  the very tempting possi- 
bility of combining the iterative procedure of 
Fourier inversion with that of the lMA(u), and 
attempt to develop the vector set, out of the 
Patterson function. I s  this  procedure pos- 
s ible? The answer clearly depends on the 
structure. In th i s  context it is useful to clas- 
sify structures a s  rational and irrational. A 

rational structure kiss atornic coordinates 
which are  expressible as rational members.  
They have the important property that the 
point a t o m  intensity distribution is triply 
periodic in  reciprocal space,  so that it is 
possible to  define a supercell. If each  re- 
ciprocal lattice point is weighted by the 
corresponding value of the point atom intensi- 
ty ,  then the vector set is obtained from a Pat- 
terson function synthesized with all the coef- 
ficients contained within one supercell. In 
other words, knowing the coefficients within 
part of the supercell, one develops the re- 
maining coefficients by the iterative technique 
of FoUiki izversion and finally obtains the 
vector set. As to irrational structures, the 
answer is not so clear cut. Here the ques- 
tion is what is the multiplicity of the super- 
cell which is meaningful and consistent with 
the accuracy of the experimental data? TO 

date ,  we d o  not have a precise answer for 
this .  However, a preliminary idea regarding 
the multiplicity of the supercell relevant to 
a given case may be inferred by calculating 
the value of the coefficient of indices (O,O,  O), 
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and those of indices  which a re  multiples of 10 

by the technique of Fourier inversion. The 
multiplicity of the supercell is approximately 
the same as  the indices  whose coefficient 
has  a value close to that of the origin term. 
In  any case, rational structure or irrational 
structure, the use  of the Fourier inversion 
technique and the 1MA function yields much 
sharper peaks along with the retrieval of the 

missing peaks. 

THE GErJERALIZED IMPLICATION FUNCTION 

Having obtained a good starting point, 
namely a sharp Patterson function, how does 
one g o  about determining the structure? A 

very useful information, in this  context, is 
certainly the apriori knowledge of the space 
group symmetry of the crystal. The basic idea 
of exploiting the crystal  space symmetry in  the 
interpretation of the Patterson function has  
been given to u s  by Martin Buerger in h i s  
formulation of the implication theory. We, 
a s  well as other workers, have generalized 
his ideas  into higher orders and higher di- 
mensions, though certainly the generalization 
is impiicii in Ehcrger'r; work. 

The central idea of th i s  kind of ap- 
proach is simply s ta ted as follows: If the 
space group symmetry is completely or even  
partially known, then one knows even at the 
very outset, a certain number, say  n, of 
equivalent points. One can then store a n  
asymmetric unit of the Patterson function in 
the computer, and calculate therefrom the 
zero order function. The essent ia l  idea is as 



.to employ shorter x-ray wavelengths, and 
collect data at lower temperatures. In m o s t  
cases, this  procedure may be highly desirable 
but not absolutelyessent ia l  f o r  one to under- 
take analytical methods of extending the range 
of the coefficients .Onesuch analytical method 
is as follows. 

One synthesizes the sharpened Patter- 
son function with the available data, and then 
resorts  to a n  iterative procedure of coefficient 
extension and information retrieval. Each 
iterative cycle  invoives three stsps. 

Step 1 - involves the coefficient syn- 
thesis .  This synthesis is calculated by the 
Fourier inversion of Patterson's synthesis, 
and is given by 

+ 
I (ii) = k 1 Pm(:) exp -2ni 8 r 

+ 8 
r 

Here, the Fourier coefficients are  the values 
Pm(r) of the Patterson functionwhich has  been 
modified by replacing all values  of P(r) Pmin, 
the expected peak height for a n  interatomic 
vector, by zeros. This is one method by which 
the concept of a point atom, so central in  the 
deveiopmeiii ijf a v e ~ t m  set, ! s introduced into 
the computing process. Second, any available 
stereochemical information may be introduced 
to great advantage. At the very least, one can 
make  the functionvalue = 0 at all points, ex- 
cept  the origin, within a sphere of radium dmin 

constructed around the origin peak. This pro- 
cedure t a k e s  care of the requirement that no 
two atoms canapproach each  other by a dis- 

tance less than dmin. 

* 
+ 

Step 2 -cons is t s  in  checking the new 
coefficients, and making negative ones zero. 
This procedure is equivalent to introducing 
the concept of the non-negativity of the in- 
tensity distribution. 

Step 3 - cons is t s  in synthesizing a 
new P(r) in  which the coefficients are  those 
of the starting set plus the additional ones. 
The iterations proceed, and i n  e a c h  cycle  
the range is extended in s t eps  of s m a l l  in- 
crements. 

-? 

THE QUESTION OF RETRIEVAL OF 
THE MISSING INFORMATION 

It is highly desirable that we supply 
the computer a good starting point, namely 
a very sharp Patterson function which has  all 
the required peaks. Now, how do we retrieve 
any information which has  been lo s t ?  The 
answer may be given by remembering that even 
though a given peak, say the one atFc -fd, 
is missing, the Patterson function still con- 
tains information about this  peak i n  the very 
many peaks at A kc - r.) and f (r+ - 4) where 

-J 
subscripts c and d refer to specific atoms, 
and j is a running subbciipi. E= th t  sll the 

computer has  to do is to collect th i s  infor- 
mation and present it at the location of the 
missing peak. This operation is done quite 
conveniently by the accumulation of minimum 
function, in the first order stage. 



* 
’ follows: The computer a s k s  the question, is 
there a n  atom at a given grid point (I, J, K)? 

, To find the answer, the computer works out 
the grid points which a re  symmetry equival- 
en t  to (I, J, K), and then compares the inter- 
atomic vectors among these n grid points. 
Then it looks up the values  of the Patterson 
function at these  (n2 - n)/2 points, and if 
the values  a re  compatible, then there i s a n  
implication that  we have a n  atom at (I, J,K).  
The computer can  carry out any one of a num- 
ber of operations on the Patterson function 
values  at the (n2 - n)/2 points, and arrive 
at a suitable measure for the implication of 
a n  atom at the grid point (I, J, K). The vari- 
ous operations can  be (1) summation, (2) 
multiplication, and (3) extraction of the mini- 
mum of the Patterson fnrictinn values. 

In the calculation of lower order func- 
tions, including the zero order, the operation 
of the extraction of theminimum is probably 
the best. But th i s  operation may become quite 
drast ic  at higher orders. In such cases ,  it is 
probably useful t o  take the sum of the last few 
minima. Alternatively, one may accept  a cer- 
tain leve l  Pmin for the expected peak height of 
a n  interatomic vector, and count how many 
t i m e s  the ac tua l  value exceeds Pmin, as  the 
computer searches the (n2 - n)/Z points, and 
ass ign  th i s  count as the measure of the impli- 
cation of a n  a t o m  at (I, J,K).  

The calculation is to be repeated for 
a l lgr id  points in  one asymmetric unit of the 
crystal space, and the output is the zero or- 
der function. It is well known that the sym- 
metry of the zero order function is much 

higher than that of the space group, and for 
this reason, the zero order function, by it- 
self, often fails to determine the complete 
structure. But the purpose of the calcula- 
tion is only to provide one or more possible 
atomic positions, located with respect to the  
origin of the space group. In all cases, any 
one peak may be chosen as  the positionof 
one a tom,  so long as this peak is not spuri- 
ous . 

One can  then go  into a calculation of 
the first order function. At t h i s  s tage,  one 
uses  as  input, not only the space  group sym- 
metry, but a l s o  the positional coordinates 
(I1, Jl ,  K,) of one atom, as determined from 
the zero order calculation. The calculation 
at a typical grid point (I, J, K) involves look- 
ing at the Patteisoii function values at the 
cross vectors between the grid point (I, J, K) 
and the atom at (I,, J,, K1) and its symmetry 
equivalents. 

The iterations proceed to higher or- 
th  ders i n  a similar fashion, so that i n  the p 

order stage, one uses  as input the positions 
of p atoms. At each  stage one increases  the 
number of input atoms. The positions of the 
additional input atoms are  derived from pre- 
ceding calculations. As the iterations pro- 
ceed to higher orders, the extra symmetry of 
the zero order function vanishes .  One may 

continue the iterations until sufficient num- 
ber of a t o m s  (usually 50% nf the tntal! PZI? 

be discovered, enabling one to calculate the 
Fourier. In some cases, the iterations may 
proceed to complete the entire structure de- 
termination. 



- -  SOME RESULTS 

The correctness of most of the above 
* ideas  has  been verified by detailed calcula- 

tions on simulated equal atom structures. As 

to actual crystals,  the formalism of the gen- 
eralized implication functions was systemati- 
cally used by Dr. F. B. Gerhardl' of our labo- 
ratory t o  solve the structure of the mineral 
pachnolite: This crystal is monoclinic, a = 

9.915A, b = 1Q.432A8 c = 15.716A8 a n d g  = 

142.26; 8 molecules per cel1,eacn moletii!e 
of formula NaCaAlF6 * H20; space group 
strictly A2, though A2/a is closely approxi- 
mated. The significance of this work is that  
not only that the computer which was  used 
was comparatively a small machine, namely 
IBM 1620 - Model 11, but a l s o  thefact  that  
there were ambiguities regarding the space 
group itself. An interesting anecdote is that 
the first atom which was discoveredfrom the 
zero order function and used a s  the starting 
point for subsequent iterations turned out t o  
be aluminum, and interestingly enough, the 
calcium atom, the heaviest one inthe struc- 
ture, was  discovered oiiiy i:: the hteritera- 
t ions from considerations of peak heights. 

ACCUMULATION FUNCTIONS, 
AND THE FUTURE 

The next major s t e p  in the interpre- 
tation of Patterson's functionmaywellbe the 
replacement of the presently available image 
seeking functions by the accumulation func- 
t ions.  l2 These are integrals of the cor- 

responding image seeking functions. The 
mos t  promising ones appear to be the accu- 

th mulation of minimum functions. In the p 

order stage,  this  function is given by 

PWS) = 1 Hin I P ( ~ ) ,  P(; i t,), 
+ 
r 

Here, Min is the operation of extracting the 
minimum among the Patterson function values  
w!thin the parenthesis. The summation is 
over one unit cell. are a 
set of interatomic vectors, defining a frag- 
ment of a given image. When such a frag- 
ment is known, then the calculated pMA(2) 
contdins peaks at all the atoms of the entire 
image. Certain properties are characteristic 
of the pMA(2) function. First, the peak heights 
at the unknown atoms are more or less the 
same as  those at the atoms which were used 
a s  input. Second, the effect of includingan 
incoirectly placed atom in  the input is so 

drasiic that  i n  some cases even the input 
atoms,which the investigator knows for cer- 
tain LO be correct, d o  not show up in  the out- 
put. This drastic effect rakes p l a t e  =?.?:, if 
posiLion of the input atom is completely in- 
correct. However, i f  the input atoms are 
correctly placed, then the overall appear- 
ance of the output is not considerably viti- 
ated by small inaccuracies i n  the coordi- 
nates of the input atoms. The reason for all 
these useful properties is the simple fact that 
the mechanism behind the production of p e a k s  
i n  the accumulation function involves a search 

.+ (ifl, iJ2, . . . , u P 

w 



I anh Yntegration of the entire information con- 
- tained by the Patterson function. 

However, it is unfortunate that a 
* systematic three dimensional calculation of 

iterations of PMA& function appears to be 
very difficult and t ime consuming with the 
present generation of commonly available 
computers. A s  a result, one is forced to use 
these functions in  a role auxiliary to that  of 
the more common image seeking functions. 
Ecwever, looking back into the fifties, how 
many of us  would have dared to undertake the 
kind of three dimensional Fouriers and full 
matrix least squares that  we are  doing these 
days? 
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DISCUSSION 

M. J. Buerger asked whether the pro- 
cedure of "chopping" the Patterson function 
would not lead to losing the interatomic peaks 
dhich correspond to single interactions. S. 
Raman aiiswered !n the negative, and went 
on to say  that the "chopping" level may be 
chosen as (P min - gP min) where g is a fac- 
tor less than unity, and may be anywhere be- 
tween 0.5 to 0.9. He a l so  emphasized that 
even i f  some peaks do  get lost, the iterative 
procedure of minimum accumulation recovers 
the missing peaks. 

J. Karle, U.S. Naval Research Lab: 
In order to extend the coefficients on 

taking the transform of a Fourier map, it is 
necessary toal ter  the map. Otherwise,assum- 
ing good accuracy, the transform of a Fourier 
map will generate the original coefficients 
from which 2 *.v=s computed. One means of 
alteration would involve the elimination of 
a l l  negative areas. Another would be, as 
Dr. Raman suggests  , the removal of all posi- 
tive peaks ,  whose magnitudes are smaller 
than the minimum possible from chemical con- 
siderations, from the map before taking the 
transform. 


